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Abstract

An implementation of the smoothed particle hydrodynamics (SPH) method is presented to treat two-dimensional

interfacial flows, that is, flow fields with different fluids separated by sharp interfaces. Test cases are presented to show

that the present formulation remains stable for low density ratios. In particular, results are compared with those ob-

tained by other solution techniques, showing a good agreement. The classical dam-break problem is studied by the

present two-phase approach and the effects of density-ratio variations are discussed. The role of air entrapment on loads

is discussed.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In many circumstances, violent fluid–structure interactions lead to air entrapment and multi-phase flows.

In marine and coastal engineering applications [11,31], the dynamics of the entrapped air at the impact may
play a dominant role during the process and contribute to the high pressure maxima and pressure oscil-

lations. Therefore, neglecting the air dynamics in impact flows may result in an incorrect approximation,

particularly in predicting the short-time pressure characteristics (i.e., time-scales much shorter than the

characteristic wave period) such as the pressure maxima, pressure rise times, and pressure oscillations.

A number of numerical techniques have been proposed to model flow fields with free surfaces or, more in

general, with (sharp) interfaces separating immiscible fluids. Broad reviews are given in [34,35]. Most of the

proposed and successful methods are based on the use of an Eulerian grid spanning the whole domain
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(possibly including different fluids) where the fluid-flow equations are solved and coupled with a suitable

technique to capture or track the interface.

A more limited number of approaches is based on the Lagrangian tracking of fluid elements, either

distributed near the interface or all over the fluid domain. Among the latter, smoothed particle hydrody-

namics (SPH) is a fully Lagrangian mesh-less technique originally developed to deal with astro-dynamical

problems [22] and successfully extended to a variety of fluid-dynamic systems [19,20]. Though it can be

computationally more expensive than other Eulerian methods, SPH features a remarkable flexibility in

handling complex flow fields and in including physical effects.
In particular, in a series of papers, Monaghan [21,25] has shown the SPH capability to treat free-surface

flows with breaking and multi-phase flows with small density differences between the considered media

[23,24]. When applying this approach to the air–water case, we found that severe instabilities develop along

the fluid interface which prevented SPH to work.

In this paper, it is presented an original SPH implementation to handle two-dimensional interface flows

with low density ratio. The key element of the present algorithm is a new form of the particle evolution

equations, derived following [5], which improves the stability and removes fictitious surface-tension effects

present in the standard SPH implementation [13]. Further improvements have been achieved by using: (i) a
periodic re-initialization of the density field based on a moving-least-square interpolation [2] and (ii) a

generalized form of Balsara�s correction [3], to the usual SPH artificial viscosity. The last treatments are

beneficial also for SPH computations of free-surface flows.

In the following, first the general concepts of the SPH modelling for incompressible interfacial flows are

given, and the standard SPH implementation is described. The difficulty in modelling two-phase flows with

small density ratios is then discussed for the case of a gas bubble rising through water. On this ground, the

present SPH-implementation is introduced and described in details. The effect of the many adaptations is

discussed by considering the rising-bubble problem and the dam-break problem. The latter is finally
studied, with more emphasis on the physics of the violent impact of water against a fixed structure and the

effect of entrapped air on the resulting loads.
2. SPH formulation for interfacial flows

2.1. Basic aspects of the SPH method for incompressible flows

In SPH methods, the fluid field is represented as a collection of N particles interacting with each other

through evolution equations of the general form

dqi

dt
¼ �qi

X
j

Mij;

dui
dt

¼ � 1

qi

X
j

Fij þ f i;

dxi

dt
¼ ui:

ð1Þ

The interaction terms Mij;Fij follow from mass- and momentum-conservation equations and contain the

density qi, the velocity ui and the pressure pi of the particles. The force f i can be any body force, though in the

following only the action of the gravitywill be considered. Finally, the last equation in (1) describes themotion

of the ith particle. A rigorous derivation of SPH equations from the equation of fluid dynamics is given in [4],

while [20] provides a more general presentation of the SPH method and its potential applications.
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The interaction terms Fij model (at least) pressure interactions and contain the pressure pi. In this

paper, we mainly focus on the SPH-modelling of incompressible inviscid fluids and, following [21], the

pressure particle is uniquely determined by the value of the density qi through a state equation of the

form

pðqÞ ¼ P0
q
q0

� �c�
� 1

�
þ v: ð2Þ

The constant background pressure v is added in two-phase flow simulations in confined domains, while

v ¼ 0 is used for free-surface flows. The parameters P0; q0; c are chosen to have maximum density oscil-

lations of order of O(1%) around the reference value q0. In practice, this is accomplished by choosing the

sound speed c2s ¼ dp=dq, 10 times or more larger than the highest fluid velocity expected in the analyzed

physical problem. As discussed later, the numerical stability of the method is related also to the local value

of cs. The use of the actual speed of sound in water would imply a time step too small for any practical use.

By assuming an explicit link between pressure and density, we do not need anymore to solve for the

Poisson equation for the pressure. Therefore, the method does not require the solution of an algebraic
problem and the memory occupation is just proportional to the number of particles. The particles can be

arbitrarily scattered over the fluid domain leading to a completely grid-free method. The interaction terms

can be computed independently of each other, resulting in an explicit algorithm which can be easily

implemented on parallel computers.

The method is rather robust, even for large free-surface fragmentation and folding, efficient and rela-

tively easy-to-code at least in its most naive implementation. Modelling of viscous, see e.g. [27], and of

turbulent flows is less obvious. Finally, the stability analysis is still an open problem [26].

Alternative formulations of particle methods have been presented to model exactly incompressible fluids
[10,14]. In particular, in [10], the authors have shown that the better stability properties of their incom-

pressible formulation allow a larger time step and therefore the total CPU time is of the same order as in the

weakly compressible approach. We have preferred the latter because of the higher resolution allowed for a

given memory occupation.

It is worth to mention that the state equation (2) describes also the iso-entropic evolution of a gas, and

system (1) suffices to describe the gas motion without solving explicitly the energy equation. Under this

simplifying assumption, the model is still applicable when the fluid compressibility matters. As discussed

later, this approximation can be accurate enough for studying air-cushion effects in impact phenomena.
2.2. Standard SPH formulation

The actual form of the interaction terms follows from the interpolation integral:

huðxÞi ¼
Z
X
uðyÞW ðx� y; hÞdVy ; ð3Þ

adopted to represent the fluid-flow variable in the domain X and using a discrete form of it to derive

approximations of the conservation equations. Eq. (3) can be interpreted as a reconstruction huðxÞi of the
field uðyÞ in terms of the data sampled through the sampling function W ðx� yÞ. The parameter h, often
called smoothing length, is a measure of the support of W , i.e., where W differs from zero. Physically, h is

also representative of the domain of influence of y. In the SPH framework, W ðx� yÞ is called smoothing

function or kernel, and has the following properties:
• W ðx� yÞP 0 for x 2 Xy � X, and zero otherwise.

•
R
X W ðx� y; hÞdVy ¼ 1.

• W ðx� y; hÞ decreases monotonously as jx� yj increases.
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In the limit for h ! 0, the kernel function W becomes a Dirac delta function, and therefore

lim
h!0

Z
X
uðyÞW ðx� y; hÞdVy � uðxÞ:

Formally, we can deduce approximations of any derivative of the field u by differentiating (3).

In practical computations, the smoothing function affects both the CPU requirements and the stability

properties of the algorithm. In two dimensions, we have tested B-spline kernels of third and fifth order, as

well as the Gaussian kernel

W ðs; hÞ ¼ 1

ph2
e�ðs=hÞ2 ;

where s ¼ jx� yj. In principle, this kernel does not have a compact support and in its use we introduced a

cut-off limit d and renormalized W to match the property of unit integral

W ðs; h; dÞ ¼ e�ðs=hÞ2 � e�ðd=hÞ2

2p
R d
0
s e�ðs=hÞ2 � e�ðd=hÞ2
� �

ds
: ð4Þ

In the practice, we usually choose d ¼ 3h which is the same radius of the fifth-order B-spline support. After

some tests, we adopted (4) because of the better stability properties [26] and the larger code efficiency.

In a widely used approach, the velocity field is approximated as

huii ’
X
j

ujWji dVj; ð5Þ

where Wji ¼ W ðxi � xj; hÞ. Further, from now on we consider huii ’ ui and will not make distinction be-

tween the field and its SPH approximation. During its evolution, each particle carries a constant mass mj

and therefore dVj ¼ mj=qj. Locally conservative expressions for divergence and gradient operators are

divðuiÞ ¼
X
j

ðuj � uiÞ � rWji
mj

qi
;

rAi ¼
X
j

ðAj �AiÞrWji
mj

qi
:

ð6Þ

Here, the gradient operator r is taken with respect to the variable xi. Finally, a commonly used form of the

pressure gradient is

rpi ¼ qi

X
j

pj
q2
j

 
þ pi
q2
i

!
rWijmj: ð7Þ

With these premises, in the following we assume:

Mij ¼ ðuj � uiÞ � rWji
mj

qi
;

Fij ¼ qi
pj
q2
j

 
þ pi
q2
i

!
rWijmj;

ð8Þ

as ‘‘standard’’ form of the interaction terms, though many variations have been proposed in the literature
[20,21].

The above recalled implementation of the SPH method has been applied to the test case sketched in

the left plot of Fig. 1: a circular bubble of fluid Y is free to rise through the initially quiescent heavier

fluid X . Only the left side of the fluid domain is plotted because of the symmetry. The considered density



Fig. 1. Bubble of fluid Y rising through the heavier fluid X . Left: sketch of the problem and adopted nomenclature. Center: flow field

for density ratio qY =qX ¼ 0:5 and tðg=RÞ1=2 ¼ 5:04. Right: enlarged view of the velocity field around the bubble interface.
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ratio is qY =qX ¼ 0:5. The number of particles used in this simulation is N ¼ 18; 352 (NX ¼ 17; 394,
NY ¼ 958), with a smoothing length h=R ¼ 5:4� 10�2. The ratio of the smoothing length to the initially

uniform particle spacing, say Dx, results to be about 1.33. This value for h=Dx is used in all the simu-

lations presented in the following. As for instance reported in [17], to choose h=Dx, some authors suggest

the practical rule that functions of the form axþ by þ c have to be reproduced when particles are dis-
tributed on a Cartesian uniform lattice. With h=Dx ¼ 1:33 and the adopted kernel, this rule is satisfied

with an error of order of 10�4. Clearly, this reproduction ability is no longer true as soon as the particles

move. For the state equations, we have selected: p0;X=qX gR ¼ 114, cX ¼ 7, therefore cs;X=ðgRÞ1=2 ¼ 28:28,
p0;Y ¼ p0;X and cY ¼ 7, resulting in cs;Y =ðgRÞ1=2 ¼ 40. A fourth-order Runge–Kutta scheme with adaptive

choice of the time step dt according to a stability criterium discussed later has been adopted for time

stepping the solution. At the beginning of the simulation dtðg=RÞ1=2 ¼ 3:4� 10�3. As the bubble rises a jet

is formed in its rear and approaches the highest point of the bubble. The jet slows down and broadens

and the bubble attains a horseshoe form. The center plot shows the fluid-flow configuration for
tðg=RÞ1=2 ¼ 5:04. The heaviest particles are colored according to their initial vertical height to show the

mixing of the fluid X induced by the bubble motion, while Y -fluid particles have a uniform color. An

enlarged view is presented in the right plot of the same figure, where the color contour of the velocity

magnitude is also shown.

Although the shown bubble interface appears somewhat irregular, the computation continued without

any difficulty. The behavior changes for smaller density ratios, where the simulation stops almost imme-

diately due to the development of a strong instability localized around the fluid interface. This is shown in

Fig. 2, where the velocity field is presented for decreasing density ratios. The smaller qY =qX is, the sooner
the instability appears. The color contours give the pressure field which is almost everywhere still hydro-



Fig. 2. Bubble of fluid Y rising through the heavier fluid X . Instability of the standard SPH method for qY =qX ¼ 0:1

(tðg=RÞ1=2 ¼ 1:51� 10�3), qY =qX ¼ 0:01 (tðgRÞ1=2 ¼ 5:65� 10�4) and qY =qX ¼ 0:001 (tðgRÞ1=2 ¼ 1:72� 10�5), from left to right, respec-

tively.
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static, with large short-length oscillations around the interface. Here, the particles attain large velocities, in

opposite directions on the two sides of the interface and the solution rapidly deteriorates.

By using the recalled standard SPH implementation for the considered test case, we never succeeded in

dealing with density ratios qY =qX 6 0:1. In the next section, we present an SPH implementation to deal with

interface flows with small density ratios (we tested down to the air–water density ratio, i.e., qY =qX ¼ 0:001).
In our experience, the presented modifications to the standard SPH implementation improve the solution
quality also for free-surface flows.

2.3. Present SPH formulation for interfacial flows

The derivation of Eq. (7) for the pressure gradient is based on the use of the identity

rp
q

¼ r p
q

� �
þ p

rq
q2

: ð9Þ

For free-surface flows, that is qY =qX ¼ 0, we can assume p ! 0 as one approaches the free surface. Hence,
the last term in (9) vanishes and smooths out the presence of the density gradient which is defined only in

the fluid side. For interface flows, the pressure is continuous and generally different from zero while the

density jumps sharply across the interface.

This circumstance is illustrated by considering the two-dimensional flow generated after the breaking of

a dam, as sketched in Fig. 3. A vertical wall is placed at a given distance from the broken dam, and the fluid

flowing along the initially dry-deck impacts eventually against it. After a run up-run down cycle, the water

overturns backwards onto the underlying fluid. The simulations were performed by the new SPH imple-

mentation, and all the modifications discussed in the following paragraphs have been adopted. Figs. 4 and 5
show the flow field when the plunging-breaker hits the underlying water, forming a closed loop entrapping

air (in the two-phase flow simulation). The right-side plots present enlarged details of the pressure field. The

gross motion of the heaviest fluid is practically not affected by the presence of the air, as the comparison

between the left-side plots shows. On the contrary, the large deformations of the water (first) and the air

entrapment (then) result in an air–water pressure field which largely differs from the free-surface case. In the



Fig. 4. Free-surface flow (qY =qX ¼ 0) generated by the breaking of a dam (cf. Fig. 3). Fluid-flow configuration (left) and pressure field

(right) after the impact of the water front against a vertical wall, tðg=HÞ1=2 ¼ 6:1.

Fig. 3. Dam-break problem and impact against a vertical rigid wall. Left: sketch of the problem and adopted nomenclature. Right:

main numerical parameters adopted for the simulations in Figs. 4 and 5. Geometric parameters L=H ¼ 2, D=H ¼ 3 and d=H ¼ 5:366.

NX ¼ 4900, NY ¼ 34; 172; P0;X =ðqX gHÞ ¼ 17:4, P0;Y ¼ P0;X ; cX ¼ 7, cY ¼ 1:4; cs;X=ðgHÞ1=2 ¼ 10:9, cs;Y =ðgHÞ1=2 ¼ 155; h=H ¼
2:69� 10�2, dtðg=HÞ1=2 ¼ 4:51� 10�4.

Fig. 5. Interface flow (qY =qX ¼ 0:001) generated by the breaking of a dam (cf. Fig. 3). Interface configuration (left) and pressure field

(right) after the impact of the water front against a vertical wall, tðg=HÞ1=2 ¼ 6:1.
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latter, right plot in Fig. 4, the pressure drops to zero when approaching the free surface. In the air–water

flow, right plot in Fig. 5, it is visible the rise of the pressure due to the closure and compression of the

entrapped air. Consistently, the pressure differs from zero at the interface, with a smooth transition between

the two media. The density is discontinuous across the interface.

The presence of such a sharp density gradient at the interface is the main source of the severe numerical

instability shown before, which prevented the standard SPH formulation to be applicable to flows with

large density differences between the two media. To avoid this, we have used the discrete approximations

divðuiÞ ¼
X
j

ðuj � uiÞ � rWji
mj

qj
;

rAi ¼
X
j

ðAj �AiÞrWji
mj

qj

:
ð10Þ

The main difference between (10) and the typically adopted Eqs. (6) is the use ofmj=qj instead ofmj=qi, which

becomes crucial for small density ratios. Finally, it can be shown that the pressure gradient in the form

rpi ¼
X
j

ðpj þ piÞrWji dVj ð11Þ

is variationally consistent with (10), see [5]. Eqs. (10) and (11) are still locally conservative. On this ground,

in the present formulation the interaction terms take the form

Mij ¼ ðuj � uiÞ � rWji
mj

qj
;

Fij ¼ ðpj þ piÞrWji
mj

qj
:

ð12Þ

The improved capabilities of the present SPH implementation are shown in Fig. 6, where the problem of

the rising bubble is shown for the air–water density ratio. The total number of particles is N ¼ 18352, re-

spectively, NX ¼ 17; 394 for the water phase and NY ¼ 958 for the air bubble. The smoothing length is

h=R ¼ 5:4� 10�2. For the equation of state we have P0;X=ðqX gRÞ ¼ 114, cX ¼ 7, cs;X=ðgRÞ1=2 ¼ 28:28 in

water, and P0;X ¼ P0;Y , cY ¼ 1:4, cs;Y =ðgRÞ1=2 ¼ 400 in air. The initial time stepping is dtðg=RÞ1=2 ¼ 3:2� 10�4.

In the same figure, the reference solution from Fig. 14, p. 156 in [37] is also plotted. This solution is
obtained by solving the Navier–Stokes equations on a fixed grid spanning over the two media. The interface

is captured by a Level-Set algorithm. The overall agreement during the whole evolution is quite satisfac-

tory. As time passes, the upwelling water motion deforms the bubble which attains a horseshoe shape. The

jet broadens, the tips of the bubble roll up and smaller bubbles are eventually detached. Before the pinch

off, the largest difference observed is related to the thickness of the bubble along the line of symmetry,

slightly smaller in the Level-Set computations. Later on, the Level-Set solution predicts the formation of

three bubbles at each side: the largest one agrees with the present SPH results, while the smaller ones are not

predicted by our method. Later on, in the Level-Set simulation those smaller bubbles disappear, probably
because of numerical errors in mass conservation.

Fig. 7 and Table 1 report a convergence study based on N -, 4N - and 16N -particle simulations, respec-

tively. The relative change

eðf ; n;m; sÞ ¼
Z s

0

jf ðt;mÞ � f ðt; nÞjdt
�Z s

0

jf ðt; nÞjdt

of the quantity f between simulations with ending time s and based on m and n particles is given for some

local and global quantities. Namely, bubble thickness along x ¼ 0, area of the bubble, center of mass Yb of



Fig. 6. Rising-bubble problem (cf. Fig. 1), qY =qX ¼ 0:001, time increases from left to right and from top to bottom. The red dots are

the Level-Set solution from [37] and compared with the present SPH method (black dots). Density re-initialization (14) and (15):

m ¼ 20; artificial viscosity (18)–(20) with a ¼ 0:02; interface-sharpness control with �aaq2
Y =qX gR ¼ 1:5.

456 A. Colagrossi, M. Landrini / Journal of Computational Physics 191 (2003) 448–475



Fig. 7. Convergence test for the rising-bubble problem. The smoothing length h decreases from left to right. qY =qX ¼ 0:001. Ending

time of simulation s ¼ 4:4.

Table 1

Convergence test for the rising-bubble problem (ending time of simulation s ¼ 4:4)

f eðf ;N ; 4N ; sÞ eðf ; 4N ; 16N ; sÞ ord

Thickness 0.0731 0.0382 0.9364

Area 0.0484 0.0047 3.3636

Yb 0.0139 0.0104 0.4111

Vb 0.0357 0.0216 0.7232

EK 0.0983 0.0312 1.6576

EP 0.0413 0.0045 3.2139
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bubble particles, center of mass velocity Vb and the total kinetic EK and potential EP energies of the whole

fluid system.

Beside the modified form of the interaction terms, many modifications have been implemented in the

present version of our SPH algorithm to obtain the above result. In the following paragraphs, we describe
in details these new elements.

Density re-initialization In the SPH method, each particle has a fixed mass mj and, if the number of

particles is constant, mass conservation is intrinsically satisfied. On the other hand, by using the evolution

equation for the density, cf. the first equation of (1), we cannot enforce exactly the consistency between

mass, density and occupied area (see p. 272 in [3] and [20,27]) as it would be possible by using

qi ¼
X
j

mjWij: ð13Þ

To alleviate this problem, the density field is periodically re-initialized by applying Eq. (13). In this pro-

cedure, special attention has to be paid to the used kernel. In fact, if
P

j Wij 6¼ 1 at point xi, the use of (13)

would introduce additional errors. In particular, this happens when approaching any boundary of the fluid

domain (free surface, interfaces between phases, solid boundaries). In these cases, indeed, the number of

particle neighbors seen by a boundary particle decreases, consequently the density computed is smaller than
the original value. The equation of state would therefore predict a wrong pressure value and the entire field

would be progressively corrupted [21].
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In [2], a first-order accurate interpolation scheme on irregularly scattered points has been proposed.

Here, we use that approach to re-initialize the density field as

hqii ¼
X
j

qjW
MLS
j ðxiÞdVj ¼

X
j

mjW MLS
j ðxiÞ; ð14Þ

where the moving-least-square kernel W MLS
j is computed through

W MLS
j ðxiÞ ¼ ½b0ðxiÞ þ b1ðxiÞðxi � xjÞ þ b2ðxiÞðyi � yjÞ�Wij;

bðxiÞ ¼
b0

b1

b2

0
B@

1
CA ¼ A�1ðxiÞ

1

0

0

2
64
3
75;

AðxiÞ ¼
X
j

WjðxiÞ~AAij;

~AAij ¼
1 ðxi � xjÞ ðyi � yjÞ

ðxi � xjÞ ðxi � xjÞ2 ðyi � yjÞðxi � xjÞ
ðyi � yjÞ ðyi � yjÞðxi � xjÞ ðyi � yjÞ2

2
64

3
75:

ð15Þ

This procedure is applied every, say, m time steps and increases slightly the computing time, mainly because

of the inversion of the 3� 3 matrix A for each fluid particle xi. On the other hand, not only the consistency

between mass, density and occupied area is restored, but the results presented in the following show that: (i)

a more regular pressure distribution can be obtained and (ii) the total energy is better conserved when

artificial viscosity is used in the computations. These benefits have been observed both for free-surface and

for interface flows.

The evolution of the pressure field for the free-surface dam-break flow is presented in Fig. 8. Two time

instants are shown, respectively before and after the impact of the water front against the vertical wall at the
Fig. 8. Free-surface flow generated by the break of a dam. Effect of the periodic density re-initialization on the pressure field (time

increases from left to right). The solutions are obtained by the present (12) with (A) m ¼ 1 and a ¼ 0; (B) m ¼ 1 and a ¼ 0:03; (C)

m ¼ 20 and a ¼ 0.
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end of the initially dry deck. The solution (A) is obtained without density re-initialization, m ¼ 1, and

turning off the artificial viscosity. Details on the artificial viscosity are discussed in the next section. The

solution (B) is obtained without the density re-initialization and by using the artificial viscosity (a ¼ 0:03,
cf. Eq. (18)). Finally, for solution (C) we used the density re-initialization every m ¼ 20 time steps and

without the artificial viscosity. Although the gross features, e.g. the free-surface profile, of the three so-

lutions are practically the same, it is apparent the growth of high-frequency pressure oscillations in solution

(A), which progressively destroy the pressure field, making difficult its physical interpretation and its

possible practical use. Moreover, negative values of the pressure possibly attained during such oscillations
can trigger tension-instability phenomena [38]. This may cause the computations to stop and in general

produce the (unphysical) fragmentation of the water jets during the later overturning.

These spurious oscillations, and their consequences, can be significantly reduced by inserting an artificial

viscous term in the momentum evolution equation, as the solution (B) shows. A closer inspection of the

pressure field near the bottom right corner, where the pressure gradients are larger, still reveals fluctuations

on spatial scale of the order of particle distance. Moreover, when using fictitious viscous terms, the total

energy of the system is not conserved, which may be not acceptable when physical time scales long relative

to the energy-dissipation rate are of interest. In solution (A), the total energy is conserved up to the machine
precision, as expected from the theoretical point of view (a simple proof valid for unbounded flows is given

for instance in [3]).

In solution (C), the density re-initialization is applied every m ¼ 20 time steps without using the artificial

viscosity. Also in this case, we found that the total energy is conserved within the machine accuracy. The

pressure field maintains a smooth character, even on a longer time scale, as shown in Fig. 9 where the

solution (C) is presented before, tðg=HÞ1=2 ¼ 5:95, and after, tðg=HÞ1=2 ¼ 6:1, the impact of the backward

plunging jet formed at the end of the run up-run down cycle.

An enlarged view of the free-surface profile for tðg=HÞ1=2 ¼ 5:95 is presented in Fig. 10. The solutions
(A), (B) and (C) are compared with the reference solution (dashed line) obtained by a boundary element
Fig. 9. Free-surface flow generated by the break of a dam. Pressure field (time increases from left to right). obtained by the present (12)

with the use of density re-initialization, m ¼ 20, and without artificial viscosity.

Fig. 10. Free-surface flow generated by the break of a dam. Effect of combined use of density re-initialization and of artificial viscosity

on the free-surface definition. The solutions are obtained by the present (12) with: (A) m ¼ 1 and a ¼ 0; (B) m ¼ 1 and a ¼ 0:03; (C)

m ¼ 20 and a ¼ 0; (D) m ¼ 20 and a ¼ 0:03. The dashed lines are the BEM solution from [12].
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method [12]. As anticipated, for m ¼ 1 and a ¼ 0, the free surface looses its definition and the agreement

with the BEM solution is rather poor around the jet region. Though the use of the artificial viscosity keeps

the free surface more sharply defined, the agreement is not recovered because the energy dissipation causes

the jet to anticipate its downward motion. The density re-initialization improves significantly the solution,

though the tip is slightly fragmented and the free surface is less regular than in solution (B). This suggested

a combined use of density re-initialization and artificial viscosity, as shown in the rightmost diagram,

solution (D), where the good agreement with the BEM solution is apparent.

We now show that the energy dissipation due to the artificial viscosity is significantly reduced when used
in combination with the density re-initialization. Therefore it can be used with a negligible effect on the

accuracy of long-time simulations. This is not un-expected because the (artificial) energy dissipation is

mainly associated with the damping of high-frequency pressure oscillations, which in the present imple-

mentation disappear through the periodic use of (14), which may be interpreted as a spatial filter. For the

solutions (A)–(D), the left diagram in Fig. 11 shows the time evolution of the total energy

ETOT ¼
Z

1

2
qjuj2 dV þ

Z
qgy dV þ

Z
qedV ; ð16Þ

where the last term is introduced to account for the fluctuation of the internal energy e associated with the

(weak) compression of the fluid. To the purpose, the (discretized) evolution equation of the internal energy

De
Dt

¼ � p
q
divu ð17Þ

is integrated in time, although not entering explicitly into the actual evolution of the particles (the equation
of state does not depend on e). The total energy is made non-dimensional by the potential-energy imbalance

DE ¼ Ep0 � Epf corresponding to the static configurations before the dam break, Ep0, and with the same

amount of fluid uniformly distributed along the horizontal bottom, Epf , sketched in the center plot of the

same figure. As anticipated, solutions (A) and (C) conserve exactly the total energy. Solution (B) shows a

good energy conservation as far as the fluid impacts against the vertical wall, placed at the right end of the

dry horizontal bottom. From the impact instant on, marked by (1) in the energy diagram, the conservation

of energy deteriorates greatly. The impact of the backward plunging jet, marked by (2), is accompanied by a

further increase of the energy-dissipation rate. This is not the case of solution (D) which, in spite of using
the artificial viscosity, is characterized by a much smaller and practically constant time rate of energy

dissipation during the whole simulation. We mention that the same results on the energy conservation have

been obtained by directly computing the work of the artificial viscous terms. Here, we preferred explicitly

using (16) to have a heuristic check also in cases with a ¼ 0.
Fig. 11. Free-surface flow generated by the break of a dam. Left: total energy conservation for solutions (A)–(D), cf. caption of Fig.

10. Effect of the interval m of density re-initialization on the total-energy conservation (d) and on the CPU-time per time step (n).
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For the same test case and solution (D), the right diagram in Fig. 11 shows the effect of the frequency of

the density re-initialization on ETOT at the end of the simulation (tðg=HÞ1=2 ¼ 7:83). In abscissa, m is the

interval between two successive application of (14). When m ¼ 1 the re-initialization is never performed,

while for m ¼ 1 the evolution equation for the density is not used and equation (13) is applied with the

moving-least-square kernel. Starting from m ¼ 1, as m diminishes the energy conservation improves. We

found heuristically that optimal values of m are in the range 20–50. We observed that this behavior is

qualitatively general, even for completely different problems, and in our simulations we usually adopt

m ¼ 20. In the same diagram, the CPU time per time-step is also reported. Values are made non-dimensional
by using the CPU time corresponding to m ¼ 1. As expected, the smaller m is, the longer the CPU time

requested is, although for the values of m practically adopted this increment is of the order of 2%.

Finally, we mention that similar benefits could have been obtained by using different interpolation

techniques on scattered points than (14) and (15). In [6], the present moving-least-square technique and the

lower-order Shepard interpolation have been applied. We have eventually chosen the former for the

(slightly) better conservation of total energy.

Artificial viscous terms In the practical implementation, a viscous term of the form

PijrWjðxiÞdVj

is included in the discretized momentum equation with the purpose to increase the stability properties of the

numerical algorithm. We started adopting the form

Pij ¼
�alij

cs;jþcs;i
qjþqi

if ðui � ujÞ � ðxi � xjÞ < 0;

0 otherwise;

�
ð18Þ

proposed by Monaghan and Gingold (see the discussion in [20]) where the speed of sound cs follows from
the state equation. In the present implementation, the original form

lij ¼ h
ðuj � uiÞ � ðxj � xiÞ
jxj � xij2 þ eh2

ð19Þ

has been modified into

lij ¼ h
kj þ ki

2

ðui � ujÞ � ðxi � xjÞ
jxi � xjj2 þ eh2

;

ki ¼
jdivuij

jdivuij þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei : Ei

p
þ 10�4ci=h

;

ð20Þ

which is an extension of the form

ki ¼
jdivuij

jdivuij þ jcurluij þ 10�4ci=h
; ð21Þ

proposed by Balsara and reported in [3]. In particular, Balsara has shown that for pure shear flows the use

of (21) reduces the generation of spurious entropy. A more general representation of the straining motion is

given through the (time) rate-of-strain tensor E ¼ symðruÞ. Therefore, in (20) we have replaced jcurluij
with the invariant E : E of the rate-of-strain tensor at point xi which corrects the damping in regions of the

velocity field with rotation, i.e., related to skewðruÞ. An example is given by further considering the dam-
break problem, cf. Fig. 3. Left plot in Fig. 12 shows the interface configuration when the plunging breaker

hits the underlying water. The reference solution (solid line) obtained by a boundary-element method [12] is

compared with the present SPH implementation. In one case, n, the artificial viscosity (18) is used with



Fig. 12. Free-surface flow generated by the break of a dam. Left: present free-surface SPH simulations are compared with the inviscid

free-surface computation by boundary element method (solid line). (n) Eq. (19) is used. (d) Eq. (20) is used. Right: total-energy

conservation; (1) with Eq. (19) and m ¼ 1; (2) with Eq. (20) and m ¼ 1; (3) with Eq. (19) and m ¼ 20; (4) with Eq. (20) and m ¼ 20. For

all the SPH simulations a ¼ 0:03 has been used (cf. Eq. (18)).
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Eq. (19), while the second, d, adopts the form (20). Apparently, the latter is much closer to the inviscid

boundary-element method solution. The reason can be traced back to the high shear which develops near

the loop of the breaking front and triggers a too severe artificial damping of the solution when the artificial

viscosity (19) is used. Ultimately, this results in an earlier impact of the plunging breaker.

The right diagram shows that the combined use of density re-initialization and Eq. (20) for the artificial

viscosity improves the total energy conservation. In general, we found the use of (20) improves the quality

of the solution both for free-surface and interfacial flows, and therefore it is usually adopted, unless
otherwise stated. From a practical view point, we note that the evaluation of ki increases the computational

time because of the need to go through the particle list.

For multi-phase flows, the quantities entering in (18) are computed separately within each fluid species.

This means that quantities related to particles of the fluid, say, Y are computed without considering the

presence of X -fluid particles even when they are close to the interface.

We note that the equivalent kinematic viscosity associated with Pij has the form acsh [22]. In our

simulations the influence of a has been checked in the range 0.005–0.03.

2.3.1. XSPH correction

To prevent particles inter-penetration, and to regularize the weakly compressible treatment of liquids,

Monaghan introduced the XSPH velocity-correction Dui, which takes into account the neighbors velocities

through a mean velocity evaluated within the particle support, i.e.,

huii ¼ ui þ Dui; Dui ¼
e
2

X
j

mj

�qqij
ðuj � uiÞWji; �qqij ¼

qi þ qj

2
: ð22Þ

The corrected velocity huii is used in density and position evolution equations and not in the momentum

equation. For two-phase flows, when the particle i is near the interface, the corresponding mean density �qqij

is wrongly evaluated and the XSPH correction leads to wrong results. In our implementation, when

considering one medium, the XSPH correction is computed without considering influence of the other

media possibly present.
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Moreover, the divergence operator is used in the form

divðuiÞ ¼
X
j

ðuj � uiÞ � rWji
mj

qj
þ
X
j

ðDuj � DuiÞ � rWji
mj

qj
: ð23Þ

For free-surface flows, with some exceptions, the correction of the divergence is often negligible [21]. In our

experience, when studying two-phase flows this correction is large and its use improves significantly the

accuracy of the solution, as demonstrated in Fig. 13. Further, the energy conservation was always found

(graphically) unaffected by the use of the XSPH correction, both for free-surface and for two-phase flows.

From a computational point of view, the second term in (23) implies to go through the whole list of

particles, increasing the computational cost.

2.3.2. Control of interface sharpness

As discussed in [13], the use of the pressure gradient in the form (7) implies fictitious surface-tension

effects which are not detected in the present implementation. On the contrary, by the present formulation,

we observed the fragmentation of the bubble and, for small density ratios, the dispersion of the light fluid in
the heavier one, cf. the right plot of Fig. 13. To keep the interface sharp, the state equation has been

modified as

pðqÞ ¼ P0
q
q0

� �c�
� 1

�
þ v� �aaq2; ð24Þ

where the last term models a cohesion force, as suggested in [29]. The pressure gradient becomes

rpi ¼
X
j

ðpj þ piÞrWjðxiÞdVj � �aa
X
j

ðq2
j þ q2

i ÞrWjðxiÞdVj: ð25Þ

In the present computations, the modified state equation has been used only for the lighter fluid Y , and the

last term of Eq. (25) can be written as

��aa
X
j2Y

ðq2
j þ q2

i ÞrWjðxiÞdVj: ð26Þ
Fig. 13. Bubble of fluid Y rising through the heavier fluid X , qY =qX ¼ 0:001. Left: present SPH implementation for tðg=RÞ1=2 ¼ 3:6.

Center: same case without using the modified divergence (23). Right: same case without Eq. (25).
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For the purpose of discussion, we note that (26) can be approximated as

�2�aaq2
0Y

X
j2Y

rWjðxiÞdVj: ð27Þ

Because of the kernel properties, the sum in (27) is (practically) zero for a particle j totally embedded within
its own phase and results in a vector normal to the interface as the particle approaches it. The parameter – �aa
controls the strength of the cohesion force.

In the present paper, no attempt has been made to model physical surface-tension effects, either by using

the modified state equation (24) or by the approach suggested in [28] based on the evaluation of the cur-

vature at the interface.

2.3.3. State equation

In the present implementation, we use the state equations

pX ðqÞ � v ¼ P0;X
q

q0;X

� �cX
�

� 1

�
; pY ðqÞ � v ¼ P0;Y

q
q0;Y

� �cY
�

� 1

�
; ð28Þ

and the corresponding sound speeds are

cX ¼
ffiffiffiffiffiffiffiffiffi
P0cX
q0;X

s
; cY ¼

ffiffiffiffiffiffiffiffiffi
P0cY
q0;Y

s
: ð29Þ

For the water–air interface, typical adopted values are cX ¼ 7 and cY ¼ 1:4, respectively. The reference
pressure P0 is usually chosen to achieve a small compressibility for the X -phase, that is UX ;max=cX � 1 where

UX ;max is the expected order of magnitude of the fluid velocity for the considered problem. We note that

both (7) and (11) imply that for a uniform non-zero pressure the exchanged force between the particles is

non-zero. Therefore, the chosen form of the state equation ensures that for qðxÞ ¼ q0 the pressure is zero

and the fluid stays at rest.

From Eq. (29), we note that for small density ratio qY =qX the sound speed in the phase Y is much larger

than in the heavier phase, and therefore the compressibility is relatively smaller in, say, air than in water.

Typical state diagrams practically adopted are shown in Fig. 14 for v ¼ 0. It is evidenced that to operate in
the same pressure range (as needed by the dynamic condition at the interface) the lighter fluid Y needs to be

modeled by a steeper state curve, hence with a higher sound speed. In the computational practice, since the

method stability is related to the speed of sound, as the density ratio decreases the time step Dt decreases
largely to prevent unstable evolutions in the lighter phase.
Fig. 14. State-equation diagrams for the two phases showing that to operate in the same pressure range the lighter fluid needs a

steepest density–pressure characteristic curve.
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2.3.4. Time-stepping scheme

The computations here reported have been obtained by using a fourth-order Runge–Kutta scheme, with

dynamic choice of the time step dt to satisfy a Courant Friedrichs Levy-type condition. In our experience,

we found that the stability properties of this scheme are better than modified-Euler and Leap–Frog schemes

and that larger time steps can be used, reducing the total computational time. Conversely, for the same dt,
the accuracy of the solution increases at the expenses of larger CPU time. The adopted CFL condition

dt ¼ bmin
j

h
cs;i þ ri

� �
; ri ¼ max

j
h
ðuj � uiÞ � ðxj � xiÞ

jxj � xij2












 ð30Þ

has been proposed in [25]. In (30), cs;i is the speed of sound of the ith particle. The minimum is evaluated

over all neighbors of the ith particle and the maximum over all the particles contributing to (18)–(20). In

our experience, the constant b is about 2.5 for the fourth-order Runge–Kutta scheme and 0.3 for the

modified Euler scheme.

2.3.5. Free-slip condition on solid boundaries

Throughout this paper, the considered flow fields are confined within fixed solid boundaries over which a

free-slip condition is enforced. A possible approach to enforce the no-penetration (or more general)

boundary condition in SPH computations is using ‘‘repellent’’ particles [21,25].
Differently, we propose to mimic the body by ‘‘ghost particles’’ with density, pressure and velocity

deduced from those of the physical particles adjacent to the solid boundary. Let us consider a plane wall, as

in right plot of Fig. 15. At each time step, all particles within a layer with thickness OðhÞ from the wall are

mirrored inside the body. The characteristics given to the ghost particles are

xiG ¼ 2xw � xi; uniG ¼ 2Unw � uni; piG ¼ pi;
utiG ¼ uti;

; ð31Þ

where ðÞt and ðÞn mean the tangential and normal velocity components to the boundary, Unw is the local

displacement velocity of the rigid boundary with instantaneous position xw. For plane boundaries (31),

allow to fulfill exactly the free-slip condition. For arbitrary shaped boundaries, as shown in the left plot, the

mirroring is performed pointwise by considering the local tangent plane. Corrections have to be enforced to

avoid an excess of ghost-mass. In practice, comparisons with boundary element-method computations in
Fig. 15. Ghost particles. Left: example of curved rigid boundary modeled by ghost particles. Right: enlarged view with details of the

mirrored velocity field.
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case of surface-piercing bodies gave good results [15,16]. Though the repellent-particle approach has

probably a larger flexibility, we preferred the ghost-particle approach for the smoother behavior of the

particles in proximity of the modeled boundary. We never attempted to enforce a no-slip boundary con-

dition.
3. Two-phase modelling of dam-break and impact problems

We discuss the flow originated by the break of a dam and the impact of the water front against a fixed

vertical wall, located downstream the dam. In spite of its simplicity, this problem embeds several features

related to practical hydrodynamic circumstances, e.g. slamming loads on ship hulls impacting on water

surface, green-water loads on deck and deck-structures of marine structures, sloshing loads in tanks [11], or

wave loads on coastal structures [31].

3.1. General features

We first study a case without fluid impact, reproducing one of the experiments in [18] (L=H ¼ 1, H ’ 5:7
cm), and previously considered in [21]. In the experiments, the water was initially contained within the solid

boundary of a water flume and a piece of wax paper, clamped between two metallic frames. The intense

current produced by a short circuit has been used to melt the wax and quickly release the paper diaphragm,
leaving the water free to flow along a practically unlimited dry deck.

Left plot in Fig. 16 gives the propagation in time of the water-front toe xfront after the dam break. The

free-surface SPH solution, �, is compared with a boundary-element method solution, solid line, and a

Navier–Stokes solution, s. The free-surface SPH simulation has been performed with: NX ¼ 6320,

h=H ¼ 1:3� 10�2, cX=ðgHÞ1=2 ¼ 10, P0;X=qgH ¼ 14:3. We have used m ¼ 20, and we have verified that re-

sults are unaffected for a ¼ ½0:005� 0:03�. In case of simulation with qY =qX ¼ 0:001, the water-front ve-

locity is graphically superimposed to the result for qY =qX ¼ 0 (cf. also right plot in the same figure), and for

this test case the air–water model is not further discussed.
Fig. 16. Time evolution of the water-front toe. t ¼ 0 is the time instant for dam break and xfront is the position of the water front. Left:

test-case from [18]. Right: test-case from [40], the horizontal line indicates the presence of the vertical wall.
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All numerical solutions agree very well. The fluid smoothly accelerates and reaches an almost constant

value of the velocity. For t ¼ 0, the inviscid solution would be singular at the contact point between the free

surface and the dry deck [32], though none of the methods captures this behavior. As expected, on a longer

time scale, the numerical solutions approach the analytical non-dimensional water-front velocity

v=ðgHÞ1=2 ¼ 2 given by the shallow-water analysis [33]. The latter is not applicable to the initial instants of

the phenomenon because shallow-water conditions are not verified, and the water-front location would be

largely overestimated with respect to all the reported solutions. Therefore, the Ritter solution has been

shifted laterally just to show the tendency of the numerical simulations to approach the shallow-water result
after a suitable time interval. The experimental data are characterized by a slower water-front velocity. The

comparison between the different numerical solutions and the correct asymptotic behavior are rather

convincing that the departure from the experimental results is partly related to experimental uncertainties

and partly to physical effects not modeled. For tðg=HÞ1=2 < 1, the differences between measurements and

(all) numerical results may be due to experimental reasons, e.g. non-uniform breaking of the diaphragm.

On a longer time scale, the bottom-induced drag alters the propagation velocity and triggers the devel-

opment of turbulence near the water front and causes the increasing delay between simulations and ex-

periments.
We now go back to the case anticipated in Fig. 3, which reproduces the experiments in [40], where a

reservoir of water, H ¼ 60 cm and L ¼ 2H , is placed at a distance Lc ¼ 3:366H from a vertical obstacle. The

sequence in Fig. 17 shows the global development of the fluid flow for qY =qX ¼ 0 (the free-surface case),

0.001 (the air–water case) and 0.1, from left to right, respectively. After the dam is removed, the flow

develops along the deck, impacting against the vertical wall. The fluid is violently deviated upwards.

Formation of spray and fragmentation of the free surface may occur. Though the SPH predicts high

particle velocities, and some particles leave the main bulk of the fluid, it is expected that the resolution of

these small-scale details is poor. Later, under the restoring action of gravity, the fluid acceleration decreases
and the upward-moving jet slows down. The motion of the water is then reversed in a waterfall, overturning

in the form of water plunging onto the wetted deck. A cavity is formed, entrapping the lighter fluid in the

case of two-phase simulations. Splash up of liquid follows the impact of the plunging breaker. For

qY =qX ¼ 0, BEM computations and the present SPH computation agree fairly well up to the backward

plunging breaker occurred, cf. Fig. 12. A further verification has been provided by comparison with Level-

Set computations [8], as reported in Fig. 18. The overall agreement is rather good. Rather small differences

are detected in the details of the splash up, of the entrapped cavity and near the intersection with the

vertical wall. The Level-Set solution is numerically smoothed. Probably, both SPH and Level-Set com-
putations loose the resolution at the tip of the splash up, where also some fragmentation is predicted by the

SPH method.

Qualitatively, the main features of the flow evolution are the same for the different density ratios

considered. Before the impact, a quantitative comparison can be made through the propagation of the

water front along the horizontal bottom (right plot in Fig. 16), the slope of the water front and its impact

velocity against the vertical wall, Fig. 19. The two latter features are those determining the initial impact

load and are of practical interest [12]. The limiting case qY =qX ¼ 0 corresponds to water moving in a

vacuum. As expected, the greater the Y -density is, the more the water motion is impeded. Consequently,
the water-front velocity decreases as qY =qX increases and seems to reach different asymptotic values.

Differences are negligible between the free-surface flow and the air–water case. The slope of the water

front (left plot) increases rapidly and the impact velocity (right plot) is smaller and smaller as the weight

of the upper fluid increases.

The maximum run up on the vertical wall (left plot in Fig. 20) exceeds always the double of the initial

water height of the reservoir, and increases as the density ratio decreases, consistently with the higher

impact velocity. For the considered density ratios, the area of the entrapped cavity, right plot, attains a

minimum value for qY =qX ’ 0:01 and increases both for larger and for smaller density ratios.



Fig. 17. Dam-break flow and impact against a vertical wall. From left to right, qY =qX ¼ 0, 0.001 and 0.1, respectively. Time increases

from top to bottom: tðg=HÞ1=2 ¼ 1:66, 2.04, 4.81, 5.72, 6.17, 7.37. The parameters of the numerical simulations are: NX ¼ 4900,

NY ¼ 34172, cX ¼ 7, cY ¼ 1:4, P0;X=ðqX gHÞ ¼ 28:5, P0;X ¼ P0;Y , h=H ¼ 2:686� 10�2, a ¼ 0:03 and m ¼ 20. The X -data apply to the free-

surface flow.
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Fig. 19. Dam-break flow and impact against a vertical wall. Effect of density ratio on water-front characteristics. Left: water-front

slope. Right: water-front impact velocity.

Fig. 18. Dam-break flow and impact against a vertical wall, qY =qX ¼ 0:001. Comparison of the present SPH computations with the

Level-Set solution (dashed line) of the Navier–Stokes equations from [7,8].

Fig. 20. Dam-break flow and impact against a vertical wall. Left: maximum run up. Right: area of the entrapped cavity.
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Fig. 21 gives the time evolution of the water height h1 and h2 at locations ðx=HÞ1 ¼ 0:825 and

ðx=HÞ2 ¼ 1:653, respectively, from the right vertical wall. The air–water case (solid lines) and the free-

surface simulation (dotted lines) are compared with measurements, n, from [40]. In the experiments,

standard capacitive wave gauges have been used which are sensitive to the wetted portion of the wire.



Fig. 21. Total height h of the water at ðx=HÞ1 ¼ 0:825 (left) and ðx=HÞ2 ¼ 1:653 (right). Solid line: qY =qX ¼ 0:001; dotted line:

qY =qX ¼ 0; (n) experiments from [40].

470 A. Colagrossi, M. Landrini / Journal of Computational Physics 191 (2003) 448–475
Hence, the numerical values are deduced from the simulations by taking the water level and deducting the
height of the (possibly present) entrapped cavity. The initial evolution, tðg=HÞ1=2 ’ 1:6–2, is characterized
by the sudden rise of the water level due to the transition from dry-deck to wet-deck conditions. The water-

front shape determines the actual growth rate of h. Therefore, the differences detected between numerical

and experimental data are reasonably due to details of the initial conditions in the experiments and bottom-

roughness effects. The two SPH simulations are in agreement, showing a limited role of the air motion at

this stage.

As time passes, tðg=HÞ1=2 ’ 2–5:6, a smaller growth rate of the water level is observed, which corre-

sponds to nearly flat interface above the wave gauges. The agreement between measurements and numerical
data is still satisfactory.

A second steep increase of h is then observed due to the water overturning which gives an additional

contribution to the water height. This is first seen for tðg=HÞ1=2 � 5:6 at the location closest to the wall, and

later, tðg=HÞ1=2 � 6:2, recorded by the farther gauge. The agreement of the two-phase modelling with the

experiments is rather good, while the free-surface computation largely over-predicts the water height h2.
Later on, the experiments and the present simulations largely differ. A Level-Set simulation, not shown,

confirms the SPH results but the limited information about the experiments does not allow a better dis-

cussion of such comparison.

3.2. Air-cushion effect on impact pressure

For a given density ratio, the (inviscid) flow generated by the dam break is governed by Froude scaling
[36]. The initial stage of the impact against the vertical wall is then solely controlled by the inertia of the

fluid, and the two-dimensional flow is well described in terms of a gravity-less potential flow. Later on,

during the run up-run down cycle, the flow is again controlled by the gravity.

As soon as a cavity is formed, the compressibility of the entrapped fluid enters the problem. The fol-

lowing discussion is based on results for the air–water case but varying the ambient-pressure conditions.

Fig. 22 presents the pressure measured on the vertical wall during the impact. In the experiments, a

circular shaped gauge of 9 cm (� 0:15H ) diameter has been used, located on the vertical wall with the center

0:267H above the deck. The top-left plot shows the experimental data compared with the numerical values
computed at that location. As expected, the impact of the water front against the vertical structure is ac-

companied by a sudden pressure rise, t=
ffiffiffiffiffiffi
gL

p
’ 2:4, and both the numerical simulations recover reasonably

well the measurements. In this initial stage, pressure and loads mainly depend on velocity and slope of the



Fig. 22. Dam-break flow and impact against a vertical wall. Top left: pressure evolution on the wall (see text); solid line: two-phase

simulation; dashed line: free-surface simulation; (d) experiments from [40]. Top right: air water-flow configuration, qY =qX ¼ 0:001,

corresponding to the pressure peak A in the pressure evolution. Bottom: free surface-flow configurations corresponding to peaks B and

C in the pressure evolution left and right respectively.

A. Colagrossi, M. Landrini / Journal of Computational Physics 191 (2003) 448–475 471
impacting water front [9,12], and the overshoot of the experimental data is probably related to details of the
experimental conditions and cannot be further commented.

The backward plunging water front induces a second pressure peak on the vertical wall, cf. peak A in

Fig. 22. This phenomenon corresponds to the formation of a closed cavity and can be further discussed by

means of the corresponding pressure contour in Fig. 22 for qY =qX ¼ 0:001 and 0 (top-right and bottom-left

plots, respectively). In the air–water case, the pressure rise inside the air cavity is felt also in a large water

region, near the corner. This air-cushion effect is not observed in the free-surface flow, and an increase of

the pressure is localized around the plunger tip impinging on the underlying layer of water. Actually, cf.

peak B in Fig. 22, the free-surface simulation shows a delayed pressure rise which can be related with the
fast circulatory flow around the entrapped cavity shown in bottom-right plot of Fig. 22. The reliability of

the latter result is clearly affected by the lack of modelling of the entrapped air. For qY =qX ¼ 0, the final

collapse of the empty cavity results in the large pressure peak C which is totally unphysical.

On a longer time scale, the two-phase computation predicts a slow decay of the mean-level pressure

which is in reasonable agreement with the experiments. In more details, the numerical results show high-

frequency oscillations associated with pulsations of the entrapped air bubble larger than in the experimental

record. As discussed in [39], a number of experimental details make rather difficult a precise quantitative

comparison with experimental results. In the present case, the number of the available experimental
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samples, the frequency-response uncertainty of the transducer adopted, three-dimensional effects and

leakage of air do not allow a complete interpretation of the measurements.

For further verification, following [1] and [39], we expect that for short time after its formation the pressure

inside the bubble is solely governed by the compressibility of the trapped air. On this ground, for small de-

partures from the initial bubble pressure, the pressure peak Pmax and the rise time smax should scale as

Pmax

qXV
2
j
� cY P0

qXV
2
j

 !1=2

;
smaxVj
S1=2
cavity

� cY P0
qXV

2
j

 !�1=2

; ð32Þ

where Scavity is the initial area of the cavity and Vj the characteristic downward velocity of the water above

the bubble. The area Scavity area is evaluated when the jet touches the underlying liquid, and the rise time
smax is measured starting from this event on. The definition of Vj is less precise but different choices do not

alter qualitatively the above scaling. For the following results, we have used the mean vertical velocity at the

tip of the plunging jet. With these premises, Fig. 23 shows pressure oscillations for a point inside the air

bubble trapped by the backward plunging breaker. At the beginning, the pressure field is almost uniform

inside the cavity, and the pressure evolution of a single point suffices to describe qualitatively the phe-

nomenon. On a longer time scale, the distortion of the bubble due to the surrounding water motion and

buoyancy effects affect the observed evolution. By keeping fixed all parameters, we have modified the

compressibility of the upper fluid through P0;Y . The results in terms of pressure peak and rise time are
summarized in the center plot of Fig. 23, where the scaling laws (32) are clearly fulfilled. In the same figure,

the right plot shows that the same scaling applies to the rise time and pressure peak on the wall.

It is worth a general comment on the applicability of the present analysis to air-cushion type phenomena.

In our formulation, both water and air have been modelled by the same state equations (28), with suitable

choice of the coefficients c. For the water, this results in the weakly compressible approximation. For the

air, it can be interpreted as the adiabatic (c ¼ 1:4) evolution of a truly compressible gas. This assumption is

consistent with Bagnold�s analysis, based on the same thermo-dynamic hypothesis and on negligible dy-

namic effects related to the air motion. The latter are included in our numerical model. Therefore, as far as
the scheme of adiabatic evolution of a single bubble of air is able to capture the actual physics, the adopted

physical scheme is general enough to be applicable.

Frequently, instead of a single bubble, an air–water mixture is observed. In this case, we could consider a

‘‘bubbly phase’’ inside the region entrapped by the water and using there a suitable state equation. For a

mixture of water with small-size bubbles may for instance be preferable to assume an isothermal evolution

(c ¼ 1:0). A more detailed discussion on the effect of entrained air in cushioning water impact is addressed in

[30].
Fig. 23. Pressure oscillations inside the air bubble entrapped by the backward plunging breaker. Same case as in Fig. 3 with

P0;Y =qX gH ¼ 4:11, 6.15, 10.2, 14.3, 17.4, 22.5, 28.6. Left: time history of the bubble pressure oscillations for P0;Y =qX gH ¼ 17:4. Center:

effect of compressibility on peak and rise time of the bubble pressure. Right: effect of compressibility on peak and rise time of the wall

pressure.
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Finally, during the early stage of violent impact phenomenon, shock waves may be generated. In this

circumstances a more general state equation for the gas should be used, for example of the type p ¼ pðe; qÞ.
This requires the solution of the Euler equations, including the equation for the internal energy e. Though
gas-dynamic problems have been successfully solved by SPH, we have never attempted to couple the weakly

compressible scheme for the water phase with a more general treatment of the air dynamics.
4. Conclusions

An implementation of the SPH method to deal with two-dimensional interface flows with low density-

ratios has been presented. The method results stable and capable to easily treat a variety of air–water flows

with interface breaking and air-entrapment. In particular, the proposed form of the interactions terms is the

basic tool to keep the algorithm stable for small density ratios. Second, a density re-initialization procedure

is introduced which improves the mass-area-density consistency [3] and filters out small-scale pressure

oscillations. This is also beneficial with respect to energy conservation when artificial viscosity is simulta-

neously used. Finally, a modified form of the artificial viscosity is proposed which improves the quality of
the results through a more selective action.

An extended verification of the method has been presented through comparison with results obtained by

the boundary-element method in the pre-breaking regime, and by the Level-Set technique for the Navier–

Stokes equations further in the post-breaking regime. The agreement is rather good, and the differences fall

in the uncertainty typical of each method.

The method is applied to study in more details the prototype two-dimensional flow arising after the

break of a dam, with the water front impacting against a vertical wall placed at some distance from the

broken dam and eventually forming a backward plunging breaker entrapping air. Comparisons with other
numerical solvers, shallow-water theory and experiments have been presented to give a robust verification

of the method prior the impact occurs. The effect of the density ratio on the global features of the studied

phenomenon is discussed.

Finally, air-entrapment effects on the impact loads have been analyzed for the air–water case. It is

shown that the free-surface flow modelling develops unphysical results, while the present two-phase

model method captures qualitatively the evolution observed in some experimental results, although the

quantitative agreement with the latter is not always satisfactory. As discussed in the referred experimental

literature, pressure measurements during violent wave–structure interactions are highly scattered and
many phenomena may hamper the comparison with the present two-dimensional computations. An

analysis based on Bagnold theory of the pressure peak inside the air cavity and on the vertical wall seems

to better confirm the reliability of the present results. Probably, an experimental activity based on force

measurements could be more suitable for the validation of the present modelling and for further physical

insights.

Modelling longer time evolutions of such phenomena would require the solution of the Navier–Stokes

equations, because of the viscous dynamics of the generated rotational structures, and to account for

surface-tension effects, in case of small geometrical scales. On the other side, for practical purposes, larger
interest is on (short-time) impact loads and, from this perspective, a more important step is the extension of

the method to the three-dimensional case, which is presently undertaken.
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